I-lacunary statistical convergence of sequences of sets

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wijsman Statistical Convergence of Double Sequences of Sets

In this paper, we study the concepts of Wijsman statistical convergence, Hausdorff statistical convergence and  Wijsman statistical Cauchy double sequences of sets and investigate the relationship between them.

متن کامل

On $I$-statistical and $I$-lacunary statistical convergence of order $alpha$

In this paper‎, ‎following a very recent‎ ‎and new approach‎, ‎we further generalize recently introduced‎ ‎summability methods‎, ‎namely‎, ‎$I$-statistical convergence and‎ ‎$I$-lacunary statistical convergence (which extend the important‎ ‎summability methods‎, ‎statistical convergence and lacunary‎ ‎statistical convergence using ideals of $mathbb{N}$) and‎ ‎introduce the notions of $I$-statis...

متن کامل

On I-lacunary Statistical Convergence of Order α for Sequences of Sets

In this paper, following a very recent and new approach of [1] and [2] we further generalize recently introduced summability methods in [11] and introduce new notions, namely, I-statistical convergence of order α and I-lacunary statistical convergence of order α, where 0 < α ≤ 1 for sequences of sets. We mainly study their relationship and also make some observations about these classes and in ...

متن کامل

Lacunary Statistical Convergence of Difference Double Sequences

In this paper our purpose is to extend some results known in the literature for ordinary difference (single) to difference double sequences of real numbers.Quite recently, Esi [1] defined the statistical analogue for double difference sequences x = (xk,l) as follows: A real double sequence x = (xk,l) is said to be P-statistically ∆− convergent to L provided that for each ε > 0 P − lim m,n 1 mn ...

متن کامل

On Ideal Version of Lacunary Statistical Convergence of Double Sequences

For any double lacunary sequence θrs = {(kr, ls)} and an admissible ideal I2 ⊆ P(N×N), the aim of present work is to define the concepts of Nθrs(I2)− and Sθrs(I2)−convergence for double sequence of numbers. We also present some inclusion relations between these notions and prove that Sθrs(I2)∩`∞ and S2(I2)∩ `∞ are closed subsets of `∞, the space of all bounded double sequences of numbers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2014

ISSN: 0354-5180,2406-0933

DOI: 10.2298/fil1408567u